If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3t^2-42t+99=0
a = 3; b = -42; c = +99;
Δ = b2-4ac
Δ = -422-4·3·99
Δ = 576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{576}=24$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-42)-24}{2*3}=\frac{18}{6} =3 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-42)+24}{2*3}=\frac{66}{6} =11 $
| 6=1+5w | | 8292-x=2828 | | 5s+-16s+7s=12 | | G(x)=7x^2-567 | | 23-y=-23 | | 5(x-34)=6x+8 | | 211=x+84 | | -9q+20q+-14q+12q+-6q=-3 | | 9=r/2+7 | | h+9.3=-9.3 | | -3t^2+18t+48=0 | | -22=-3p-7 | | -3=-7+2b | | -5=-13-x | | -5=-v/4-3 | | (3x+21)^4/3+9=90 | | 1=-w/5+6 | | 105=y-25 | | 14q-13q+3q+5q=18 | | 4x+2x-56=4 | | 8=112*z | | 6=d/2+2 | | (2x+12)^2/3-3=13 | | 7m^2+3m=0 | | 16+x-8=4 | | -8x+15x-8=-1 | | -12=-8-t/4 | | 4(x+4)+3=7x+4(x+3) | | 112=0.5(120+z) | | 13x=56+6x | | 13=10+b/5 | | 10-4v=v |